

General Certificate of Education

Mathematics 6360

MM05 Mechanics 5

Mark Scheme

2007 examination - June series

er with the "des any

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

eries Mathscloud.com

Key to mark scheme and abbreviations used in marking

	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
A	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is for method and accuracy						
E	mark is for explanation						
√or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only RA required accuracy						
AWFW	anything which falls within FW further work						
AWRT	anything which rounds to ISW ignore subsequent work						
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct x marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM05

MIMIU5		ı		40
Q	Solution	Marks	Total	Comments
1(a)	Maximum speed $\Rightarrow \omega a = 4$	B1		
	Maximum acceleration $\Rightarrow \omega^2 a = 100$	B1		
	$\omega = 25$	M1		
	Period is $\frac{2\pi}{}$			
	ω			
	$=\frac{2\pi}{25}$	A1	4	AG; needs to use a justified $\omega = 25$
	25		-	
	4			
(b)	Amplitude is $\frac{4}{25}$ m	B1	1	
, ,	23			
2(a)	Using transverse component of		5	
2(a)				
	acceleration is $r \frac{d^2 \theta}{dt^2}$	B1		
	$ml\frac{d^2\theta}{dt^2} = -mg\sin\theta$	M1		
	$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -\frac{g \sin \theta}{I}$			
	For small angles of θ , sin $\theta \approx \theta$	B1		
	$\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} = -\frac{g\theta}{I}$	A1	4	AG
	ut į			
	. π			
(b)(i)	$A = \frac{\pi}{400}$ $\omega = \sqrt{\frac{g}{l}}$	B1		
	Γσ			
	$\omega = \sqrt{\frac{s}{l}}$	M1		
	0.8 7./10			
	$=\sqrt{\frac{9.8}{0.5}} = \frac{7\sqrt{10}}{5}$ or 4.43	A1	3	
	γ υ.			
(ii)	Maximum speed is $a\omega$			
()		M1A1		Needs 0.5 term
	$=\frac{7\sqrt{10}}{5}\times0.5\times\frac{\pi}{400}$	1711/11		
	= 0.0174	A1	3	$\sqrt{\frac{g}{2}} \times \frac{\pi}{400}$
	Total		10	

Q	Solution	Marks	Total	Comments
3(a)	$AB = 6a\cos\theta$	M1A1		3.2
	Potential energy, below <i>O</i> , of rod is			
	$-2mga\frac{3}{2}\cos 2\theta = -3mga\cos 2\theta$	B1		
	Potential energy, below O , of particle is $-mg(7a - 6a\cos\theta)$	B1		
	$= 6mga\cos\theta - 7mga$			
	$V = 6mga\cos\theta - 7mga - 3mga\cos2\theta$	A1	5	AG
(b)	At equilibrium, $\frac{\mathrm{d}V}{\mathrm{d}\theta} = 0$	M1		
	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = 6mga\sin 2\theta - 6mga\sin \theta$	M1A1		
	$=6mga\sin\theta(2\cos\theta-1)$			
	= 0 when			
	$\sin\theta = 0 \text{ or } \cos\theta = \frac{1}{2}$	A1		
	∴system is in equilibrium when			
	$\theta = 0$ and $\frac{\pi}{3}$	A1,A1	6	
(c)	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = 12 mga \cos 2\theta - 6 mga \cos \theta$	M1		
	When $\theta = 0$, $\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = 6mga$	A1		
	This is positive ⇒ minimum PE Position is stable equilibrium	E1		
	When $\theta = \frac{\pi}{3}$, $\frac{d^2V}{d\theta^2} = -9mga$			
	⇒ maximum PE	E1	4	
	Position is unstable equilibrium Total	E1	15	

e series — Retriscioud.com

MM05 (cont	t)			90
Q		Marks	Total	Comments
4(a)	$r = ae^{3\theta}$			
	$\dot{r} = 3ae^{3\theta}\dot{\theta}$	M1		
	$\ddot{r} = 9ae^{3\theta}\dot{\theta}^2$	M1		
	Since $\ddot{\theta} = 0$,	B1		B1 for $\ddot{\theta} = 0$
	$\dot{r} = 18ae^{3\theta}$	A 1		
	$\ddot{r} = 324ae^{3\theta}$	A1		
	Since $\dot{\theta}$ is a constant, $\theta = 6t$ and $\theta = 0$ when $t = 0$	B1		
	Transverse acceleration is $2\dot{r}\dot{\theta} + r\ddot{\theta}$	M1		
	$=216ae^{18t}$	A1		
	Radial acceleration is $\ddot{r} - r\dot{\theta}^2$			
	$=324ae^{18t}-36ae^{18t}$	M1		
	$=288ae^{18t}$	A1	10	
(b)	Using $F = ma$,			
	$\mathbf{F} = 288mae^{18t}\hat{r} + 216mae^{18t}\hat{\boldsymbol{\theta}}$	M1A1		
	Magnitude is $\{(288mae^{18t})^2 + (216mae^{18t})^2\}^{1/2}$	M1		
	$=360mae^{18t}$	A1	4	AG
	Total		14	

de series Manaths Cloud Com

MM05 (cont					160
Q	Solution	Marks	Total	Comments	
5(a)	Natural length of AP is $4a$ and natural length of BP is $2a$				
	When particle is x from equilibrium position:				
	Tension in AP is $\frac{4mn^2a(2a+x)}{4a}$	M1A1			
	Tension in <i>BP</i> is $\frac{4mn^2a(a-x)}{2a}$	M1A1			
	In general position, using $F = ma$: $m\frac{d^2x}{dt^2} = \frac{4mn^2a(a-x)}{2a} - \frac{4mn^2a(2a+x)}{4a}$ dx				
	$-2mn\frac{\mathrm{d}x}{\mathrm{d}t}$	M1A1			
	$m\ddot{x} = 2mn^2a - 2mn^2x - 2mn^2a - mn^2x - 2mn\dot{x}$				
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2n\frac{\mathrm{d}x}{\mathrm{d}t} + 3n^2 x = 0$	A1	7	AG	
(b)	[Substituting $x = Ae^{pt}$]				
	$p^2 + 2p + 3 = 0$	M1A1			
	$p = -1 \pm \sqrt{2}i$	A1			
	General solution is:				
	$x = e^{-t} \left(A \cos \sqrt{2}t + B \sin \sqrt{2}t \right)$	A1			
	When $t = 0$, $x = \frac{1}{2}a \Rightarrow \frac{1}{2}a = A$	B1			
	Differentiating:				
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\mathrm{e}^{-t} \left(A\cos\sqrt{2}t + B\sin\sqrt{2}t \right) +$	M1A1			
	$e^{-t}(-A\sqrt{2}\sin\sqrt{2}t+B\sqrt{2}\cos\sqrt{2}t)$	1,1111			
	When $t = 0$, $\frac{\mathrm{d}x}{\mathrm{d}t} = 0$				
	$\Rightarrow 0 = -A + \sqrt{2}B$				
	$\Rightarrow 0 = -A + \sqrt{2}B$ $A = \frac{1}{2}a, \ B = \frac{1}{2\sqrt{2}}a$	A1	8		
	$x = ae^{-t}(\frac{1}{2}\cos\sqrt{2}t + \frac{1}{2\sqrt{2}}\sin\sqrt{2}t)$				
	Total		15		

MM05 (con		1		, John Marie
Q	Solution	Marks	Total	Comments
6(a)	Change in linear momentum =			
	work done by external force	3.61.4.1		Needs Storms
	$(m + \delta m)(v + \delta v) - mv = mg \sin 30 \delta t$	M1A1		Needs δ terms
	$v\delta m + m\delta v = \frac{1}{2}mg\delta t$			
	(to first order of δ terms)			
	$\frac{1}{2}mg = m\frac{\mathrm{d}v}{\mathrm{d}t} + v\frac{\mathrm{d}m}{\mathrm{d}t}$	M1		Accept $mg \sin 30 = \frac{1}{2}mg = \frac{mdv}{dt} + kmv^2$
	Using $\frac{\mathrm{d}m}{\mathrm{d}t} = kmv$:			
	$m\frac{\mathrm{d}v}{\mathrm{d}t} + v kmv = \frac{1}{2} mg$			
	$2\frac{\mathrm{d}v}{\mathrm{d}t} + 2kv^2 = g$	A1	4	AG
(b)	Using the identity $\frac{dv}{dt} = v \frac{dv}{dx}$:			
	$2v\frac{\mathrm{d}v}{\mathrm{d}x} + 2kv^2 = g$			
	$2v\frac{\mathrm{d}v}{\mathrm{d}x} = g - 2kv^2$	B1	1	AG
(c)	$\int \frac{2v}{g - 2kv^2} \mathrm{d}v = \int \mathrm{d}x$	M1		
	$-\frac{1}{2k}\ln(g-2kv^2) = x+c$	A1		
	When $x = 0$, $v = 0 \implies c = -\frac{1}{2k} \ln g$	M1		
	$x = \frac{1}{2k} \ln \frac{g}{g - 2kv^2}$	M1A1		
	$\frac{g}{g - 2kv^2} = e^{2kx}$			
	$ge^{-2kx} = g - 2kv^2$			
	$ge^{-2kx} = g - 2kv^2$ $v^2 = \frac{g(1 - e^{-2kx})}{2k}$	A1	6	

MM05 (cont	t)			y y
Q	Solution	Marks	Total	Comments
6(d)(i)	Using $m = \frac{4}{3}\pi r^3 \rho$: $\frac{dm}{dt} = kmv \Rightarrow$			
	$4\pi r^{2} \rho \frac{dr}{dt} = k \frac{4}{3} \pi r^{3} \rho v$ $3 \frac{dr}{dt} = krv$	M1		
	$3\int \frac{dr}{r} = \int kv dt$ $= \int k dx$ $3\ln r = kx + c$			
	$r^{3} = Ce^{kx}$ When $x = 0$, $r = \frac{1}{3} \Rightarrow C = \frac{1}{27}$	A 1		
	$r^3 = \frac{1}{27} e^{kx}$	B1	3	
(ii)	When $r = 1$, $e^{kx} = 27$ Using result in (c), $v^2 = \frac{g(1 - \frac{1}{729})}{2k}$	M1		
	$v = \sqrt{\frac{364}{729}} \frac{g}{k}$	A1	2	
	Total		16	
	TOTAL		75	